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Statistical Significance: 
The BASIE (BAyeSian Interpretation of Estimates) Framework 
for Interpreting Findings from Impact Evaluations 
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Researchers and decision-makers know
that some evaluation findings are more 

credible than others, but sorting out which 
findings deserve special attention can be 
challenging. For nearly 100 years, the null 
hypothesis significance testing (NHST) 
framework has been used to determine 
which findings deserve attention (Fisher, 
1925; Neyman & Pearson, 1933). Under 
this framework, findings determined to be 
statistically significant are deemed worthy 
of attention. But the meaning of statistical 
significance is often misinterpreted, 
sometimes at great social cost (McCloskey 
& Ziliak, 2008)—for example, when negative 
side effects of a drug are ignored because 
their p-value is a little larger than 0.05, which 
just misses statistical significance. In short, 
we want statistical significance to tell us that 
there is a high probability that an intervention 
improved outcomes—yet it does not actually 
tell us that. 

John Deke is a senior researcher at 
Mathematica Policy Research. 

Mariel Finucane is a senior statistician at 
Mathematica Policy Research. 

When an evaluation reports a statistically 
significant impact estimate, it is often 
misinterpreted to mean that there is a very 
high probability (for example, 95 percent) 
that the intervention works. When a finding 
is not statistically significant, it is often 
misinterpreted to mean that there is a high 
probability that the intervention is a failure. 
In truth, we should often be less confident 
in study findings (both the successes and 
failures) than what misinterpreted statistical 
significance implies. The overconfidence 
inspired by these misinterpretations has 
contributed in two ways to the reproducibility 
crisis in science (Peng, 2015), in which 
many statistically significant findings cannot 
be reproduced by other researchers. First, 
misinterpreting statistical significance can 
lead to an overestimate of the probability 
that an intervention “works” in an initial 
study. Second, misinterpreting statistical 
insignificance in a subsequent replication 
study can lead to an overestimate that an 
intervention is a failure. In many cases, the 
truth more likely lies in between. These 
misinterpretations are so widespread 
that, in 2016, the American Statistical 
Association issued a statement on the subject 
(Wasserstein & Lazar, 2016; Greenland et al., 
2016). 

Learn more about OPRE Methods Inquiries on Bayesian analysis in the 2019 brief Bayesian 
Inference for Social Policy Research. 
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The purpose of this brief is to demonstrate 
the potential size of these misinterpretations 
in the context of rigorous impact evaluations 
and to describe an alternative framework 
for interpreting impact estimates, which 
we call BASIE (BAyeSian Interpretation of 
Estimates).1 BASIE has limitations, which 
we discuss, but we believe it represents a 
substantial improvement over the existing 
hypothesis-testing framework. In particular, 
BASIE provides an answer to fundamental 
questions such as, “What is the probability 
the intervention truly improved outcomes, 
given our impact estimate?”—a question that 
the NHST framework cannot answer. 

1. STATISTICAL SIGNIFICANCE— 
WHAT IT IS AND WHAT IT IS NOT 
When the true effect of an intervention 
program is zero, the estimated impact (that 
is, the difference in average outcomes 
between a treatment and control group) 
does not necessarily equal zero.2 The 
difference between the two stems from 
random imbalances between the treatment 
and control groups. But, as the size of a 
study increases, these random differences 
tend to become smaller. In other words, as 
sample size increases, impact estimates 
become more precise. Researchers try to 
design studies that are large enough so that 
it is unlikely that an impact estimate of a 

1 The specific context for this brief is evaluations seeking 
to assess the impacts of social policy interventions, such 
as evaluations of interventions intended to improve health, 
employment, or educational outcomes. 
2 In nonexperimental studies, or experiments with 
implementation issues such as attrition, differences could 
also arise because of bias—that is, systematic differences 
between the treatment and control groups. Throughout this 
brief, we assume the context of an unbiased study. 

substantively meaningful magnitude would 
result when the true effect is zero. 

A statistically significant impact estimate 
is unlikely to occur when the true effect is 
zero. Often, an impact estimate is deemed 
statistically significant when the p-value is 
less than 0.05. The p-value is the probability 
of estimating an impact of the observed 
magnitude (or larger) when the true effect is 
zero.3 

The following is a correct interpretation of a 
statistically significant finding: 

When the true effect is zero, there is a 
5-percent chance that the impact estimate 
is statistically significant (p < 0.05). 

This is an incorrect interpretation: 

When the impact estimate is statistically 
significant (p < 0.05), there is a 5-percent 
chance that the true effect is zero. 

The difference between the correct and 
incorrect statements might seem nuanced. 
Does it really matter that the blue and red text 
is switched between these two statements? 
Yes: The order of these phrases is critical. 

An Example of Misinterpreted 
Statistical Significance 

A simple hypothetical example can illustrate 
the difference between these seemingly 
similar statements. Suppose that a Federal 
grant program funds 100 locally developed 
intervention programs to reduce drug 
dependency. In this example, the truth is that 
90 of the programs have zero impact and 10 
of the programs reduce drug dependency 
by 7 percentage points. The true effects are 

3 See the appendix for a more formal definition of the 
p-value. 
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unknown to policymakers or researchers.  
Suppose we select one of these programs at  
random and evaluate it using a study that is  
big enough to have an 80-percent probability  
of detecting an impact of 7 percentage points  
(a fairly standard way to design a study).  
In this study, we would declare an impact  
estimate statistically significant if the p-value  
was less than 0.05.  

This barrel contains four types of marbles: 

In this example, we can calculate the 
probability that the true effect is zero when 
the impact estimate is statistically significant 
through a simple counting exercise that 
uses the information presented in the 
previous paragraph. Figure 1 illustrates all 
the information presented in the previous 
paragraph, represented as a barrel full 
of marbles. In this barrel, each marble 
represents the results from studying one 
program. When the researcher randomly 
selects a program to study, they are 
essentially reaching into this barrel and 
pulling out one of these marbles. 

Figure 1. A Barrel Full of Marbles 
Representing Potential Impact Studies 

` Eight orange marbles represent studies 
in which the program is truly effective, 
and the impact estimate is statistically 
significant. The number of orange marbles 
is eight because we have 80 percent 
power to detect a true effect, and there 
are 10 programs with true effects: 0.8 × 
10 = 8. 

` Two black marbles represent studies in 
which the program is truly effective, but 
the impact estimate is not statistically 
significant. If we expect to detect 80 
percent of true effects, that means we 
expect not to detect 20 percent of true 
effects: 0.2 × 10 = 2. 

` Five purple marbles represent studies 
in which the program is not truly effective, 
but the impact estimate is statistically 
significant. The number of purple 
marbles is five because the probability 
of an impact estimate being statistically 
significant when the true effect is zero 
is 5 percent: 0.05 × 90 = 4.5 (which we 
rounded up to 5). 

` Eighty-five grey marbles represent 
studies in which the program is not truly 
effective, and the impact estimate is not 
statistically significant. If we expect 5 
percent of ineffective interventions to have 
statistically significant impact estimates, 
that means we expect 95 percent of 
ineffective interventions not to have 
statistically significant impact estimates: 
0.95 × 90 = 85.5 (which we round down to 
85 so that all the marbles sum to 100). 

The probability that the true effect is zero 
when the impact estimate is statistically 
significant can be calculated by counting 
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marbles: 5 purple marbles / (5 purple 
marbles + 8 orange marbles) = about 38 
percent. 

This example clearly illustrates that 
misinterpreting statistical significance is not 
a small mistake. Although the probability that 
the impact estimate is statistically significant 
when the true effect is zero is just 5 percent 
(a probability that is typically calculated 
under the NHST framework), the probability 
that the true effect is zero when the 
impact estimate is statistically significant is 
approximately 38 percent (a probability that 
typically is not calculated under the NHST 
framework). 

The Missing Link: External Evidence 

To assess the probability that an intervention 
is truly effective, we must know what 
proportion of interventions are effective. 
In the real world, we do not know that with 
certainty. In the example above, we had that 
evidence—we knew that only 10 percent of 
programs were effective. With that evidence, 
we could calculate the probability that 
the true effect was zero given our impact 
estimate (it was 38 percent). This calculation 
depended on a relationship involving 
conditional probabilities that was first 
described by an English minister named 
Thomas Bayes. This relationship is called 
Bayes’ Rule.4 The calculation 5 purple 
marbles / (5 purple marbles + 8 orange 
marbles) is an example of the application of 
Bayes’ Rule. 

4 See the appendix for more detail on Bayes’ Rule, including 
the equation. 

2. BASIE: A HARD-HEADED 
INFERENTIAL FRAMEWORK FOR 
INTERPRETING FINDINGS FROM 
IMPACT EVALUATIONS 
In the world 
of high-
stakes impact 
evaluations, 
it is the job of 
policy makers to 
ask questions 
and the job of 
researchers to provide the most accurate 
answers possible. These answers should be 
based on quantifiable, verifiable evidence. 
The answers should not be based on 
anyone’s (not policymakers’ nor researchers’) 
personal beliefs about the intervention being 
evaluated. Although the NHST meets this 
criterion, it does not answer the question 
policymakers most likely want to know: 

Hard-head-ed 
Adjective 
Practical and realistic; not 
sentimental 

Source: Oxford English 
Dictionary 

What is the probability that an intervention  
was effective given an observed impact?  
Bayesian methods can answer this question,  
but they often do so by drawing on prior  
beliefs regarding the effectiveness of the  
intervention being studied. The advantage  
of BASIE is that it answers the question of  
interest to policymakers using quantifiable,  
verifiable evidence. BASIE is heavily  
influenced by researchers who have sought  
to use Bayesian methods for scientific  
purposes (Gelman, 2011; Gelman & Shalizi,  
2013; Gelman, 2016). The components  
of BASIE are summarized in table 1 and  
discussed below. 

Probability. With BASIE, probability is 
based on things we can count. Following the 
example of Gigerenzer and Hoffrage (1995), 
we think of probability in terms of relative 
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frequency—that is, probability is defined 
in terms of tangible things that we can 
empirically count and model. For example, 
the probability of rolling an odd number on a 
six-sided die is 0.50 because there are three 
odd numbers, six total numbers, and 3/6 = 
0.50. By way of comparison, some Bayesian 
statisticians define probability in terms of the 
intensity of one’s personal belief regarding 
the truth of a proposition (de Finetti, 1974). 
We reject that subjective definition for this 
hard-headed framework. 

Priors. Following Gelman (2015a), we 
draw on prior evidence (not prior belief) to 
develop an understanding of the probability 
that interventions have effects of various 
magnitudes. For example, we might look 
to an evidence review (such as the What 
Works Clearinghouse [WWC] or the Home 
Visiting Evidence of Effectiveness [HomVEE] 
reviews) for prior evidence on the distribution 
of intervention effects.5 Combining our 
definition of probability as a relative frequency 
with our definition of priors as evidence based 
enables us to express prior probability using 
statements such as, “The WWC reports 
impacts of 30 interventions designed to  
improve reading test scores for elementary  
school students. Twenty-one of those 30  
interventions had impacts of 0.15 standard  
deviations or higher.” In subsequent sections,  
we discuss in more detail the selection of  
prior evidence, the extent to which imperfect  
prior evidence can lead us astray, and cases  
in which it might be appropriate to use  
modeling to combine or refine prior evidence.  
When seeking to assess the probability that  
an intervention was effective, we will see  

5 For more information, visit the WWC website (http:// 
ies.ed.gov/ncee/wwc/) and the HomVEE website (http:// 
homvee.acf.hhs.gov/). 

that it is generally better to use imperfect but 
thoughtfully selected prior evidence than to 
misinterpret a p-value and that increasing the 
sample size of a study will reduce sensitivity 
to prior evidence. 

Point estimates. We recommend reporting 
both the traditional impact estimate based 
only on study data and an estimate 
incorporating prior evidence. This second 
estimate is sometimes called a shrunken 
estimate because it essentially shrinks the 
traditional estimate toward the mean of the 
prior evidence. Which estimate receives 
more emphasis will depend on how similar 
the new study is to the base of prior evidence 
and whether it is possible to make credible 
statistical adjustment for any important 
differences. 

Interpretation. Although we recommend  
reporting point estimates that are not  
informed by prior evidence as well as point  
estimates that are, we recommend always  
using prior evidence to interpret the impact  
estimate. Using prior evidence is the only way  
to assess the probability that the intervention  
truly has a positive effect, even if that prior  
evidence is substantively different from  
the new study (for example, the new study  
might be focused on an outcome domain,  
intervention model, or implementation context  
that is not represented in the prior evidence).   

Sensitivity analysis. At multiple steps 
throughout a study, researchers must 
choose from among different methodological 
approaches, and it is important to assess 
the extent to which results vary across 
credible alternative approaches. In the 
BASIE framework, it is especially important 
to assess sensitivity to the choice of prior 
evidence. We discuss sensitivity to priors in 
detail later in this brief. 

http://ies.ed.gov/ncee/wwc/
http://ies.ed.gov/ncee/wwc/
http://homvee.acf.hhs.gov/
http://homvee.acf.hhs.gov/
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Table 1. Components of the hard-headed BASIE framework for impact evaluation 

Component Yes No Notes 

Probability 

A relative frequency 
(for example, “21 out 
of 30 relevant studies 
in HomVEE”) 

Personal belief 
(for example, “I am 70 
percent sure that…”) 

In this framework, we can generally think of 
a probability as a number based on things 
that can be counted. When communicating 
probabilities, it is important to make sure we 
are clear about what is being counted. 

Prior Evidence Personal belief 

We could combine or refine the prior 
evidence using a model, but the 
fundamental basis of the prior is evidence, 
not belief. 

Reported 
impact estimate 

Both the impact 
estimated using only 
study data and the 
shrunken impact 
estimate incorporating 
prior evidence 

Just the impact 
estimated using only 
study data or the 
shrunken impact 
estimate 

The relevance of the prior evidence base to 
the current study will dictate which estimate 
we should highlight. 

Interpretation 
Bayesian posterior 
probabilities, Bayesian 
credible intervals 

Statistical significance, 
p-values 

As discussed in the text, p-values and 
statistical significance are too easily 
misinterpreted and do not tell us what we 
really want to know: the probability that the 
intervention truly improved outcomes. We 
can appreciate that it might be necessary to 
report p-values and statistical significance 
because some stakeholders will continue to 
demand them, but p-values and statistical 
significance are not a part of this framework. 

Sensitivity 
analysis 

Reporting sensitivity of 
impact estimates and 
posterior probabilities 
to the selection and 
modeling of prior 
evidence 

Reporting a single 
answer with no 
assessment of its 
robustness 

Increasing the sample size of a study will 
reduce sensitivity to prior evidence. 

Source: This framework is influenced by many sources, including Gigerenzer and Hoffrage (1995); Gelman (2011); Gelman 
and Shalizi (2013); and the presentations and discussions at the Office of Planning, Research, and Evaluation’s 2017 
Bayesian Methods for Social Policy Research and Evaluation meeting. 
HomVEE = Home Visiting Evidence of Effectiveness 

3. PLAUSIBLE PRIORS PRECEDE PERSUASIVE POSTERIORS 
As described previously, estimating the probability that an intervention has a truly positive effect 
requires outside evidence about the proportion of interventions that have positive effects. If 
similar interventions have rarely made large impacts on similar outcomes, then we would infer 
that a very large impact of the current intervention is less likely. By contrast, the more common 
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large effects have been in the past, the 
more probable it is that a sizeable impact 
estimated using data from the current study is 
the result of a true effect rather than random 
chance. This use of external information is 
what distinguishes Bayesian statistics from 
classical statistics. 

No to the flat prior. At one time, something 
called the flat prior was very popular. The flat 
prior is centered at zero with infinite variance. 
It was seen as objective because it assigns 
equal prior probability to all possible values 
of the impact; impacts of 0, 0.1, 1, 10, and 
100 standard deviations are all treated as 
equally plausible. The flat prior might seem 
reasonable when defining probability in 
terms of belief rather than evidence—one 
might imagine that the flat prior reflects the 
most impartial belief possible (Gelman et 
al., 2013). As such, this prior was de rigueur 
for decades, falling out only recently. But, 
when we base probability on evidence, 
the absurdity of the flat prior becomes 
apparent. What evidence exists to support 
the notion that impacts of 0, 0.1, 1, 10, and 
100 standard deviations are all equally 
probable? No such evidence exists, and in 
fact, quite a bit of evidence is completely 
inconsistent with this prior (for example, the 
distribution of impact estimates in the WWC 
or the HomVEE review).6 Following Gelman 
and Weakliem (2009), we reject the flat prior 
because it has no basis in evidence. 

The flat prior and misinterpretation of 
p-values. Bayesian flat-prior analysis is 
equivalent to misinterpreting the p-value 
because a Bayesian posterior probability 
derived under a flat prior is identical (at 
least for simple models) to a one-sided 

6 For more information, visit the HomVEE website (http:// 
homvee.acf.hhs.gov/) and the WWC website (http://ies. 
ed.gov/ncee/wwc/). 

p-value. Each time someone misinterprets 
a significant p-value as implying a high 
probability that the intervention truly works, 
they are assuming a flat prior. Therefore, 
although Bayesian methods are often 
discussed as a possible solution to the 
reproducibility crisis in science, Bayesian 
analyses that use a flat prior are no solution 
whatsoever. If researchers switch to Bayesian 
methods but use a flat prior, they will continue 
to exaggerate the probability of large program 
effects and continue to contribute to the 
reproducibility crisis. 

Yes to the evidence-based prior. The 
evidence-based prior summarizes the 
impacts of a broader population of similar 
interventions. In choosing the population, we 
are deciding what prior evidence is relevant 
for the current evaluation. For example, the 
WWC is a rich source of prior evidence for 
education studies, and the HomVEE review 
is a rich source of prior evidence for home 
visiting studies. After we have chosen a 
relevant source of prior evidence, we can 
calculate the prior probability of a meaningful 
impact by counting the relative frequency 
of meaningful impacts in the population, 
such as “The WWC reports impacts of 30 
interventions designed to improve reading 
test scores for elementary school students. 
Twenty-one of those 30 interventions had 
impacts of 0.15 standard deviations or 
higher.”7 

Challenges of specifying an evidence-
based prior. Choosing a population  
of relevant interventions is the key to  
specifying an evidence-based prior, but  
determining how narrow or broad that  

7 By meaningful impact, we mean an impact of a magnitude 
deemed substantively important by relevant stakeholders 
or decision makers. We are not referring to statistical 
significance. 

http://homvee.acf.hhs.gov/
http://homvee.acf.hhs.gov/
http://ies.ed.gov/ncee/wwc/
http://ies.ed.gov/ncee/wwc/
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population should be is often challenging. In 
the previous example, the prior comprised 
interventions that targeted elementary 
school students and focused on reading 
skills. Would it have been better to make the 
population broader by including additional 
interventions focused on math skills or to 
make the population narrower by limiting 
the interventions to those that targeted only 
students in a specific grade? Often, a broad 
population might seem less relevant, but it 
might be all that is available. Furthermore, 
narrower prior populations are at higher risk 
for cherry picking, whereby researchers 
include favorable past studies in the prior 
with the goal of increasing the posterior 
probability that their current study produces 
meaningful impacts. Lastly, it is important 
not to completely rule out less likely, but still 
plausible, potential intervention effects. For 
these three reasons, the prior studies used 
to calculate probabilities should represent 
a wide, but realistic, range of possible 
intervention effects. Sensitivity analyses can 
include narrower and broader priors. 

Two other challenges of specifying an 
evidence-based prior are that (a) evidence 
bases include impact estimates rather than 
true impacts, and those estimates can 
be noisy, and (b) prior evidence could be 
affected by publication bias or p-hacking 
(Gelman & Loken, 2014). In these cases, it 
is appropriate to use modeling to combine 
or refine prior evidence. For example, noisy 
estimates can be down-weighted relative to 
more precise estimates, and adjustments can 
be made for suspected biases. 

Given these challenges—as we will describe 
in more detail below—it is crucial that 
evaluators (1) check how sensitive their 
inferences are to changing the prior and (2) 

make it clear what information their prior is 
based on when they state their posterior. 

Consequences of using an imperfect 
evidence-based prior. If we correctly specify 
the prior (and do everything else right), then 
our posterior probability statements will 
be correct too.8 Specifically, the posterior 
probability statements will be well calibrated, 
meaning that if we made a number of 
probability statements at the 80-percent 
level (for example, “There is an 80-percent 
chance that the intervention improves 
outcomes”) and then went back after the fact 
and counted how many times the proposition 
in each statement turned out to be true, the 
relative frequency of true statements would 
be 80 percent. Unfortunately, we can never 
perform this calibration in practice because 
we never ultimately observe the true impact 
of an intervention. The best we can do is 
to use a simulation, in which we do know 
the hypothetical truth, to (1) verify that our 
methods produce well-calibrated probabilities 
when we correctly specify the prior and 
(2) assess the consequences of using 
imperfect prior evidence. Such a simulation is 
described in the appendix. The following are 
the key results: 

` Using a flat prior (or, equivalently, 
misinterpreting a p-value) leads us to 
overstate the probability of big effects 
(Gelman, 2015b). This is because, under 
the flat prior, very large impacts are 
deemed just as likely as small impacts 
even when there is no evidence to 
support this. For example, under the flat 
prior, the probabilities that an impact 
is greater than 0.05 and 5 standard 

8 For the purpose of the discussion in this section, we as-
sume that there are no other problems with a study’s design 
or data. 



Moving Beyond Statistical Significance 9 

   
 

 
 

   

 

 
 
 

 
 
 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 
 

 
 
 
 

 
 

 
 

 
 

 
 

 

  

   
 

 

deviations are both about 50 percent.9 

By overstating the prior probability of big 
effects, we also overstate the posterior 
probability of big effects. 

` Increasing the sample size of a study will 
reduce sensitivity to prior evidence. 

` An imperfect but thoughtfully selected 
evidence-based prior will generally lead 
to better posterior probabilities than the 
flat prior. 

4. SENSITIVITY ANALYSIS 
Given the challenges of specifying an 
evidence-based prior, no single prior in 
and of itself might seem entirely credible. 
Nonetheless, evidence-based priors still 
boast important advantages over the flat 
prior, which produces inferences that are 
equivalent to misinterpreting p-values, 
as described previously. We therefore 
recommend sensitivity analysis to determine 
how posterior probabilities vary across a 
plausible range of priors. Findings that are 
robust across this range can be used with 
increased confidence to guide decision 
making. For example, the following candidate 
priors could be included in a sensitivity 
analysis: 

1. Take the literature at face value, assuming 
no p-hacking or other selection biases. 

2. Assume that estimates in the literature 
are exaggerated by a factor of two on 
average. 

9 The probability that the impact is greater than 0.05 is 
infinitesimally larger than the probability that the true impact 
is greater than 5 standard deviations, but both are about 50 
percent. This is attributable to the infinite variance of the flat 
prior. 

3. Account for possible overestimation of 
estimates in the literature more stringently 
by assuming that, on average, past 
impacts in this set of interventions equal 
zero. 

4. Include a broader or narrower population 
of prior studies. 

The results of such a sensitivity analysis 
provide bounds around posterior probability 
statements, such as, “The probability that the 
intervention improved outcomes by at least 
0.2 standard deviations could be as low as 
64 percent or as high as 91 percent.” 

5. REPORTING IMPACT 
ESTIMATES 
When estimating the impact of a program 
under BASIE, there are two point estimates 
that could be reported. The first estimate is 
based on only study data, not prior evidence. 
This estimate is the traditional point estimate 
familiar to most researchers, representing, for 
example, the difference in outcomes between 
the treatment and control groups. The second 
estimate incorporates prior evidence into the 
estimate for the new study. This shrunken 
estimate is a weighted average of the impact 
estimate using study data and the prior 
evidence. The advantage of the shrunken 
estimator is that it is less susceptible to errors 
that arise from random baseline mismatches 
between a treatment and control group. We 
recommend reporting both the traditional and 
shrunken estimates of a program’s impact. 

Exactly where each estimate is reported will 
depend on the situation. Some studies might 
warrant a focus on the traditional estimates, 
and other studies might best focus on the 
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shrunken estimate. The emphasis will depend 
on how similar the new study is to the base 
of prior evidence and whether it is possible 
to make credible statistical adjustment for 
any important differences. In cases when a 
well-founded a priori expectation exists that 
the new intervention will have smaller or 
larger impacts than the interventions in the 
evidence base, we recommend emphasizing 
the traditional estimate based on only study 
data (not the shrunken estimate). In cases 
in which the impacts from the evidence 
base are representative of what we expect 
from the new intervention, we recommend 
emphasizing the shrunken impact estimate. 

For example, consider an evaluation of a new 
program using a home visiting model that is 
much more resource intensive than anything 
previously evaluated. We contend that it 
would be inappropriate to highlight the impact 
estimate informed by prior evidence in this 
case because we could reasonably expect 
the new high-intensity model to have larger 
impacts than the interventions in the evidence 
base. In technical terms, the impact estimate 
from the new study is not exchangeable 
with prior impact estimates in the evidence 
base. By contrast, in a replication study 
evaluating an intervention that already has a 
large evidence base, the existing evidence 
base might be exchangeable with the impact 
estimate from the new study. In this case, it 
would be appropriate to highlight the estimate 
that incorporates external evidence to reduce 
the influence of random error in the impact 
estimate. 

Assessing the appropriateness of the 
exchangeability assumption is not always 
as easy as in the two extreme examples 
described previously. In many cases, 
reasonable arguments can be made in favor 

of and against exchangeability. For this 
reason, we recommend reporting both, even 
if one receives more emphasis. 

6. INTERPRETING POSTERIOR 
PROBABILITY STATEMENTS 
Although Bayesian posterior probabilities 
are easier to interpret than p-values and can 
more accurately assess the probability that an 
intervention works than can a misinterpreted 
p-value, we do not mean to suggest that 
posterior probabilities are immune to 
misinterpretation. These probabilities have a 
specific meaning, and one can misinterpret 
posterior probabilities if they are not 
explained correctly and presented carefully. 
In this section, we discuss how to avoid 
these misinterpretations, and we provide 
an example of how to correctly describe the 
posterior probability. 

Specifically, there are three possible 
misinterpretations of Bayesian posterior 
probabilities that we think it important to 
guard against: 

1. Researchers might want to make a 
probability statement without doing the 
hard work of specifying an evidence-
based prior. 
` Beware of glib probability statements! 

Recall that making a probability 
statement under a flat prior is 
equivalent to misinterpreting a 
p-value.10 

10 Another alternative is to use a prior that is not evidence 
based but is also not the flat prior. Such a prior—for 
example, the standard normal distribution—can be 
appropriate for parameters that are not of substantive 
interest, such as a residual variance parameter. 

http:p-value.10
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2. Readers of an impact study might want to 
know the probability that an intervention 
will work for them. 
` A Bayesian posterior probability 

statement is relevant only to the 
population specified in the prior. 
Therefore, given that priors are 
typically broad, posteriors must be as 
well. 

3. Readers might also want to make a 
predictive statement about the effect of 
an intervention in future contexts. 
` A posterior probability is a 

retrospective statement regarding the 
impact of the evaluated intervention 
in the context it was evaluated. For 
example, the findings from a study 
conducted in the context of Chicago in 
2010 might not apply in the context of 
Chicago in 2020. (Making predictive 
statements is possible but requires 
more modeling and assumptions—it 
does not happen automatically.) 

The correct interpretation of a posterior 
probability cannot provide any of these 
things, but it does still provide useful 
guidance as to which impact estimates 
deserve special attention. Specifically, a 
correctly interpreted posterior probability is 
an assessment of the probability that our 
intervention (the one we are studying) is truly 
effective, given the findings of our study and 
the distribution of intervention effects (the 
prior distribution) in the population that we 
are assuming to be relevant. It is crucial to 
be clear about what the population is when 
stating the posterior. For example, “Given 
the chances of having an impact greater 
than 0.15 standard deviations that we see 

from past studies of reading programs for 
elementary school students, combined with 
the impact estimate that we calculated in this 
study, we estimate that there is a 75-percent 
probability that our intervention increased 
reading test scores by at least 0.15 standard 
deviations for the students included in this 
study.” 

7. PROBLEMS WITH IMPACT 
EVALUATIONS THAT BASIE 
CANNOT FIX 
BASIE addresses the problem of 
misinterpreting statistical significance, but 
it does not address all the other reasons 
that evaluation findings can be inaccurate 
or misleading. Evaluation findings can 
be inaccurate because of problems with 
an evaluation’s design, analysis, or data. 
Evaluation findings can also be inaccurate or 
misleading for reasons that are more human 
than statistical. Although the replication 
crisis in science might be attributable partly 
to an honest misinterpretation of statistical 
significance, it might also be attributable 
to the bad incentives that arise when 
researchers’ professional success depends 
on the findings from a study rather than its 
quality. For example, the tendency for journal 
editors to publish only statistically significant 
results (publication bias) created the bad 
incentive for researchers to manipulate 
p-values (known as p-hacking). If journal 
editors continue to create bad incentives, 
then researchers might find other ways to 
manipulate findings, even under the BASIE 
framework. BASIE represents an important 
improvement over the NHST framework but 
does not solve these other problems. 
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8. IN CONCLUSION, A FRESH 
START 
We cannot continue to misinterpret p-values 
and statistical significance, yet we also must 
provide decision makers with a credible 
assessment of the probability that an 
intervention actually worked. In this brief, we 
illustrated the potential magnitude of p-value 
misinterpretation and presented a framework 
that can serve to answer the important 
question: What is the probability that an 
intervention worked? 

With BASIE, evaluators will continue 
to provide answers to important policy 
questions based on evidence—not anyone’s 
personal beliefs. But now, we can provide 
those answers in a way that is more intuitive, 
better aligned to questions of interest to 
decision makers, and less susceptible to 
misinterpretation. Although BASIE is not 
a panacea—the answers it provides are 
not perfect, and misinterpretations are 
still possible—we believe it represents a 
significant improvement over the hypothesis 
testing framework. 

This brief was prepared for the Office of Planning, Research, and Evaluation (OPRE), part of the U.S. 
Department of Health and Human Services’ (HHS) Administration for Children and Families (ACF). It 
was developed under Contract Number HHSP233201500109I. Insight Policy Research (Insight), located 
at 1901 North Moore Street, Suite 1100 in Arlington, Virginia, assisted with preparing and formatting 
the brief. The ACF project officer is Emily Ball Jabbour, and the ACF project specialist is Kriti Jain. The 
Insight project director is Rachel Holzwart, and the Insight deputy project director is Hilary Wagner. 
This brief is in the public domain. Permission to reproduce is not necessary. Suggested citation: Deke, 
J., & Finucane, M. (2019). Moving beyond statistical significance: the BASIE (BAyeSian Interpretation 
of Estimates) Framework for interpreting findings from impact evaluations (OPRE Report 2019 35). 
Washington, DC: Office of Planning, Research, and Evaluation, Administration for Children and 
Families, U.S. Department of Health and Human Services. 
This brief and other reports sponsored by OPRE are available at www.acf.hhs.gov/opre. 
Disclaimer: The views expressed in this publication do not necessarily reflect the views or policies of 
OPRE, ACF, or HHS. 
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APPENDIX 
In this appendix, we include equations and technical details of the simulation study. We 
present these details in the same order as the topics appear in the brief. 

1. DEFINITION OF THE P-VALUE 

(my_estimate)

The p-value is the probability of estimating an impact of the observed magnitude (or larger) 
conditional on the true effect being zero. For a one-tailed test, this probability is presented in 
equation 1, where p is the p-value, is the impact estimator, is the observed 
impact estimate, and θ represents the true effect. 

[1] p = P( > | θ = 0)(my_estimate)

2. CALCULATING BAYESIAN POSTERIOR PROBABILITIES 
Using Bayes’ Rule, the posterior density function of a true parameter θ conditional on the data 
y is given by equation 2, where P is a probability density function. In this equation, the prior is 
P(θ), the likelihood is P(y|θ), and P(y) is a normalizing constant (which does not depend on θ). 
In the context of an experimental impact study, the parameter of interest is the true effect and 
the data are summarized by the impact estimate and its standard error. 

[2] 

3. SIMULATION STUDY OF THE CONSEQUENCES OF USING AN 
IMPERFECT PRIOR 
Given the challenges of specifying an evidence-based prior, no single prior in and of itself 
might seem entirely credible. This naturally raises the question: What are the consequences 
of using an imperfect prior? Because we never ultimately observe the true impact of an 
intervention, it is not possible to answer this question using study data. The best we can do is 
to use a simulation, where we do know truth. 

In this simulation study, we will assume that we know the true prior, that is, the true distribution 
of impacts in a population of similar interventions. In each iteration of the simulation, we will 
draw a true impact from that distribution, simulate data given the drawn impact, and then 
perform Bayesian inference assuming the wrong prior. Summarizing across iterations of the 
simulation, we will assess how our inferences are affected by using an imperfect prior. 

Methods 

1. Assume that the true prior is N(0.1,0.42 ). This distribution was chosen to correspond 
roughly with the empirical distribution of impact estimates in the WWC. Under this prior, the 
true proportion of interventions with an impact of 0.2 standard deviations or greater is about 
40 percent. 

http:N(0.1,0.42
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2. For each iteration i of the simulation, 
a. Draw a true impact θi from the true prior distribution P(θ)≡N(0.1,0.42 ): 

θi ~ P(θ) 

b. Simulate data yi from the likelihood P(y│θ) given the drawn impact θi: 

yi ~ P(y│θi) 

c. Perform Bayesian inference assuming the wrong normal prior P*(θ): 

P*(θ│yi) ∝ P(yi│θ) P*(θ) 

3. Averaging across iterations of the simulation, calculate the average stated probability that 
the impact of the intervention is 0.2 standard deviations or greater. For well-calibrated 
inferences, this should be equal to the true value of 40 percent. 

Settings 

We will consider all possible combinations of the following assumed prior parameters and 
sample sizes: 

` Assumed prior mean: 
0 
0.1 (the truth) 
0.2 

` Assumed prior standard deviation: 
0.2 
0.4 (the truth) 

Infinity (This corresponds to a flat prior.) 

` Sample size, assuming no clustering: 
10 
100 
1,000 
10,000 

Results 

The results of the simulation are given in figure 2. The following are the key findings: 

` When our assumed prior is correct, our posterior probability statements are well 
calibrated, meaning that on average, we report the correct probability (40 percent) that an 

http:P(�)�N(0.1,0.42
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intervention’s impact is 0.2 standard deviations or greater. This result, which is depicted as 
a green line in the middle panel of the figure, holds for all sample sizes. 

` The adverse consequences of using any imperfect prior diminish as sample size increases. 
Specifically, when n = 10,000 (see the right side of each panel of the figure), on average, 
we report approximately the correct probability that an intervention’s impact is 0.2 standard 
deviations or greater (40 percent), regardless of which prior we assume. 

` Using a flat prior (or, equivalently, misinterpreting a p-value) leads us to overstate the 
probability that an intervention’s impact is 0.2 standard deviations or greater. This 
anticonservative bias, which is depicted as a purple line in each panel of the figure, 
diminishes as sample size increases. 

` It is generally better to use imperfect but thoughtfully selected prior evidence than a flat 
prior (or, equivalently, to misinterpret a p-value). See, for example, the blue lines in each 
of the first two panels—they show that as long as you do not overestimate the prior mean 
nor underestimate the prior standard deviation, your posterior probability statements will be 
more accurate than those derived under a flat prior. 

Figure 2: Simulation Results on the Consequences of Using an Imperfect Prior 

Note: The true prior is N(0.1, 0.42). 
SD = standard deviation 
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